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S U M M A R Y  

Predictive microbiology can be used to determine and predict the shelf-life of perishable foods under commercial distribution conditions based on microbial 
growth kinetics. This paper presents general microbial growth kinetics with the Monod model and the Gompertz function. Additional models are given to 
describe effects of food composition (e.g. aw) and environmental conditions (e.g. temperature, gas atmosphere) as well as their interaction on the growth 
kinetic parameters (lag time and specific growth rate). These models can be used to predict the time to reach a critical level under any constant conditions 
within the range tested. A combination of microbial kinetics with an engineering accumulation approach can be used to predict the final microbial level in a 
food, or the loss of shelf-life, for any known time-temperature sequence, if there is no history effect or the history effect is negligible. A time-temperature 
indicator could be used for predicting the remaining shelf-life of perishable foods under any distribution condition based on microbial growth kinetics. 

P R E D I C T I V E  M I C R O B I O L O G Y  A P P R O A C H E S  

Microbiological decay is a major  mode of food deterio- 

ration, especially of fresh products. Spoilage of  foods by 
microbial growth usually requires a high number  of cells to 

be present. The dominant  organisms leading to spoilage of 
a particular product depend on the food composit ion and 
the environmental  conditions under which the food is stored. 

For example,  in refr igerated packaged beef,  Pseudomonas 
spp. were dominant  aerobically while Lactobacillus and 

others were dominant  anaerobically [107]. Spoiled products,  

even if no health hazard is present,  are considered adulterated 

under Section 402(a)(1) and 402(a)(3) of the Food,  Drug 

and Cosmetic Act  of the Uni ted  States and thus processors 
should conduct shelf-life tests to determine when spoilage 
occurs. On the o ther  hand, foods contaminated with patho- 
gens are not necessarily organoleptically spoiled. If these 

foods are consumed,  they could cause foodborne  diseases 
even when containing a small number  of  pathogens. Pro- 

cessing, subsequent handling and distribution must ensure 
absolute control over  these pathogens and the manufacturer  

should verify the effectiveness of the various barriers to 

prevent their presence and growth in foods using appropriate 
tests [73]. 

An emerging type of food processing is the manufacture 
of extended shelf-life refrigerated (ESLR)  foods [53], which 
may have a shelf-life from ten days to as long as six weeks 
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under proper  refrigerated storage conditions. The extension 
of shelf-life is obtained by strict quality assurance/control 

( Q A / Q C )  on product formulat ion and processing based on 

Hazard Analysis and Critical Control  Point (HACCP)  
principles and by use of various hurdles to microbial growth 

such as vacuum or modified a tmosphere  packaging (MAP) ,  
antimicrobials, pH  reduction, pasteurization and irradiation. 

Leistner [61] and Rodel  and Leistner [85] introduced the 

hurdle concept to describe the effects of various intrinsic 

food composit ion factors and extrinsic environmental  con- 

ditions, on microbial growth and survival as listed in Table 

1. Quanti tat ive data for the required level of any hurdle 

TABLE 1 

Food composition factors and environmental conditions affecting 
microbial growth 

Food composition factors Environmental conditions 

pH, acidity % buffering power 
aw water content and hysteresis 

Eh (Redox potential) 
Antimicrobial agent (natural 
and additive) 
Microbial flora distribution and 
competition 
Frozen state 
Physical structure (e.g. emulsion) 
Biological structure (e.g. eggshell) 
Nutrients (lipids, protein, etc.) 
Colloidal constituents 
Surface/volume ratio of substrate 

Temperature and fluctuation 
Relative humidity and 
fluctuation 
Light intensity 
Gases (02, CO2 and their 
ratio, ethylene) 
Packaging characteristics 
and interaction 



310 

and its synergistic effect on other hurdles is limited. Recently, 
the concept of 'predictive microbiology' has been introduced 
[3,29,66,84]. Predictive microbiology, through the use of 
mathematical models, allows for quantification of multiple 
independent variables and their interactions. From this it 
becomes quite clear that the graphical representation of the 
hurdle concept as presented in some papers is not exactly 
correct. Hurdles should not be viewed as a successive series 
of obstacles to overcome, rather there is one obstacle, the 
size of which grows or shrinks as each barrier is introduced 
or changed in concentration. If hurdles function in a 
synergistic fashion, then the sum of the effects may be 
greater than the effect of each added together. However, a 
number of authors [e.g. 13,23] have stated that their models 
suggest that the combined effects of temperature and water 
activity are additive. 

The most important hurdle for ESLR foods is proper 
refrigeration conditions. Variations in temperature through- 
out the distribution that would be acceptable for 'conven- 
tional' refrigerated products are very detrimental to the 
quality and shelf-life of ESLR foods and can lead to unsafe 
conditions since pathogens may grow in the absence of 
normal spoilage organisms. The eventual spoilage of an 
ESLR product is often caused by quite different types of 
microorganisms and/or mechanisms compared to those found 
in the 'conventional' product. There is little information 
available on microbial based shelf-life of these products as 
a function of temperature. Accurate determination and 
prediction of shelf-life of these products are important in 
terms of safety, legal liability and cost. 

Predictive microbiology can be applied to determine and 
predict the shelf-life of perishable foods under commercial 
conditions based on microbial growth kinetics. It can also 
be used to predict the safety of a product which lacks a 
hurdle against the growth of pathogens and to evaluate the 
effects of various hurdle factors, including composition, 
processing and packaging on microbial stability in foods. A 
key point that must be made is that there are two approaches 
of predictive microbiology. In the first approach, one does 
studies of growth under many different conditions, such as 
was done by Gibson and Roberts [36] for Clostridium 
botulinum. Data at each condition is used to determine a 
lag time or growth rate parameter and then these data are 
modeled by some function to give a three-dimensional 
surface which indicates growth rate or condition for no growth 
for two environmental factors simultaneously. Multivariant 
models based on the use of the Gompertz function in 
combination with response surface analysis have been 
developed to predict the behavior of foodborne pathogens 
in response to food formulation and storage parameters, 
including temperature, pH, sodium chloride content, sodium 
nitrite concentration, and atmosphere [6,8,9,36]. A similar 
logistic regression analysis has been used to calculate the 
probability of toxin production from one spore of C. 
botulinum in fish homogenate as a function of temperature 
and inoculum size [62]. Regression analysis was also used 
by Jensen et al. [46] to model growth of C. botulinum in 
laboratory medium and by Ikawa and Genigeorgis [43] 

for fish fillets stored under modified atmospheres. The 
probability of growth of Zygosaccharomyces bailii in a fruit 
drink has been modeled similarly [18,19]. These plots are 
especially useful for determining the needed hurdles to 
prevent outgrowth of pathogens and spoilage. Large data- 
bases are now being established to do this by the USDA, 
Campden Food and Drink Association and Unilever. The 
Pathogen Modeling Program developed by the USDA is a 
database applicable to six pathogens, Salmonella spp., 
Listeria monocytogenes, Shigella fiexneri, Staphylococcus 
aureus, Aeromonas hydrophila and Escherichia coli 0157:H7. 
It should be noted that one should not extrapolate beyond 
the database as all the boundaries may not be established. 
Unfortunately, these databases are not designed to predict 
what will happen to the food if environmental conditions 
such as temperature or relative humidity are varied over 
time as in a real distribution. This is the second approach 
of predictive microbiology, i.e. evaluating the growth or loss 
of shelf-life in a product under a variable storage environment 
using data from constant environmental conditions. 

The main purpose of this paper is to present mathematical 
models that are available to describe quantitative effects of 
various hurdles on microbial growth kinetics which can 
change during food distribution and to demonstrate the 
applicability of microbial growth kinetics in predicting shelf- 
life of foods under fluctuating environmental conditions. 
Aspects of the variability of microbiological data, effects of 
packaging materials and thermal properties of foods on 
response of food content to environmental change, time- 
temperature history effects for microbial growth, will also 
be discussed wherever appropriate. 

MICROBIAL GROWTH KINETICS AND ENVIRON- 
MENTAL HURDLE FACTORS 

General growth curve 
In general, for any homogeneous microbial population 

under steady-state conditions, the growth on a nutrient 
medium or a real food system can be typified by the curve 
in Fig. 1. The stationary and death phases are generally not 
applicable to shelf-life as by that time, the food would be 
unacceptable. Food composition, environmental conditions, 
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Fig. 1. A typical microbial growth curve. 
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and age and status (injured or not) of the microbes upon 
being inoculated or contaminated, may affect the shape of 
a growth curve as shown in Fig. 2. Growth curve (a) does 
not include a lag phase, which may occur when the organism 
is transferred to the same environmental condition at a 
relatively high population and during the stage of exponential 
growth. Growth curve (b) is the same as the typical growth 
curve in Fig. 1. Growth curve (c) has a drop in the population 
during the lag phase. The degree of the drop depends on 
the growth stage of the flora upon being transferred and 
the change of environmental condition(s) and further injury. 
Curve (d) represents a desirable case, where the net 
population does not change, i.e. the growth rate is equal to 
zero, although the microbes may survive in the form of 
spores or just do not divide, e.g. near the minimum water 
activity (aw) for growth. As long as the initial population is 
low enough, this is not a concern in terms of shelf-life but 
could be a problem if the organisms were pathogens. Curve 
(e) is a die-off curve, where microorganisms cannot survive, 
thus the product is microbiologically stable. There are many 
descriptive methods proposed in the literature [e.g. 104,110] 
to describe a microbial growth curve, where the main 
assumptions are that the population is homogeneous and 
the growth rate or generation time is age-independent. In 
this chapter, only the Monod model and the Gompertz 
function will be discussed in detail. 

Since a food usually spoils much before the stationary 
phase is reached, one should try to maximize analysis of the 
lag time and the growth rate in the exponential phase. 
Determination of these two kinetic parameters and modeling 
of the quantitative effects of various hurdles on them become 
critical for microbial shelf-life prediction and risk assessment. 

Determination of growth kinetic parameters 

1. Monod model. Monod [72] stated that the rate at which 
the population increases is proportional to the number of 
members in the population, i.e. the specific growth rate or 
the generation time is assumed to be constant for constant 
environmental conditions. This is effective within a short 
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log No 
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Fig. 2. Various types of microbial growth curves. 

period of time, i.e. before the growth begins to significantly 
decrease the substrate available or change the environment 
(e.g. lower pH). The integrated form of the Monod model 
is: 

N = No exp[k(t - re)] (1) 

where N is the number of organisms at time t, No is the 
initial number, k is the specific growth rate, and tL is the 
lag time. 

The specific growth rate is the slope of the plot of In N 
vs t, for t > tL. The lag time, tL, can be determined 
graphically, corresponding to the point of intersection of the 
No line with the linear regression line of the exponential 
growth phase, as shown in Fig. 1. When experimental points 
show a decline in cell numbers before growth commences, 
i.e. curve (c) in Fig. 2, the point at which the line describing 
this decline in cell numbers in the lag phase meets the 
calculated exponential growth phase is found and this can 
b e  used as the lag time value. This model is simple and 
fairly accurate and has been used extensively, including for 
mixed flora [107]. 

2. Gompertz function. A microbial growth curve can also 
be modeled by a non-linear model, called the Gompertz 
function, which was first introduced by Gibson et al. [37] 
to describe microbial growth. Due to space and nutrient 
limitation, as well as toxic metabolite production, the specific 
growth rate of microbes is not constant over time, but 
increases to a maximum, then decreases. The Gompertz 
function has the form: 

Log N = A + C exp {-exp[-B(t-M)]} (2) 

where: N is CFU unit -1 at time t, A = asymptotic log count 
of bacteria as time decreases indefinitely, C = asymptotic 
amount of growth that occurs as t increases indefinitely (i.e. 
number of log cycles of growth) [Iog(CFU unit-I)], M = time 
at which the absolute growth rate is maximal, and B = 
relative growth rate at M. 

Lag phase duration, exponential growth rate or generation 
time as well as maximum population density can be derived 
from the above four parameters by non-linear regression of 
log N vs time [8,37]. Zwietering et al. [110] manipulated Eqn 
2 so that it contains three biologically relevant parameters, 
i.e. the maximum specific growth rate, the lag time, and 
the maximum microbial density. In addition, they made an 
extensive comparison and confirmed the adequacy of the 
Gompertz function and its advantage over several other 
sigmoidal functions. Garthright [34] further made several 
refinements in the prediction of microbial growth curves 
and found additional reasons to prefer the Gompertz 
function. The lag time can also be determined mathematically 
[7,34]. 

Both the original and modified Gompertz function have 
been tested for many species of microorganisms and fits the 
data very well [8,65]. However, the fit of the Gompertz 
function is greatly affected by the number of observations 
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made for the growth curve and the statistical quality of 
those counts. For a good fit of the function, one needs at 
least 15 data points spread uniformly through all growth 
phases. This is a problem if the growth is too fast or the 
lag time is too short or the experiment ends too early before 
reaching the stationary phase. The combination of too few 
observations and variable counts led to failure of the 
Gompertz function for some data [38]. Reducing the number 
of points per curve increased the number of curves that 
could not be fitted [4]. Several protocols have been developed 
as described elsewhere in the symposium for optimizing the 
use of the Gompertz function. 

3. Comparison of Monod model with Gompertz 
function. Table 2 gives the comparison of the data from 
Fu et al. [32] for the growth of Pseudomonas fragi in a 
simulated milk system. As expected, the maximum growth 
rate constant determined from the Gompertz function is 
higher than the specific growth rate constant determined 
from the Monod model. The lag time shows the opposite 
effect. However, the predicted time to reach 2 x 107 CFU 
m1-1 is almost the same and close to the actual time for 
both models except at 2 ~ where the difference mainly 
comes from the lag time determined graphically. This 
indicates that the models would predict about the same 
shelf-life for a constant storage temperature. However, the 
Monod model is easier to use practically than the Gompertz 
function, despite the fact that software are commercially 
available for use on a PC or mainframe. 

Effect of temperature 
Temperature is one of the most important environmental 

factors affecting the growth and viability of microbes. 
Although microbial growth can occur at temperatures from 
about - 8  ~ to +90 ~ the range of temperature that 
permits growth of any specific organism seldom exceeds 
35 ~ [42]. Within this range, temperature affects the 
duration of the lag phase, the rate of growth, the final cell 
numbers, the nutrient requirements, and the enzymatic and 
chemical composition of the food. 

Food-poisoning bacteria can multiply within a temperature 
range from about 0 ~ to 50 ~ but only a few (e.g. types 
of E, F, and non-proteolytic type B strains of C. botulinum 
and Yersinia enterocolitica) can grow down to refrigeration 
temperature [35]. Refrigerated storage of food will favor 
gram-negative spoilage bacteria or psychrotolerant patho- 
gens, whereas higher-temperature storage may favor growth 
of Bacillus cereus, Clostridium perfringens, S. aureus, and 
other mesophilic foodborne microorganisms. 

1. Arrhenius model. The Arrhenius equation based on 
thermodynamic considerations has had notable success in 
describing the temperature dependence of many chemical 
reactions related to the shelf-life of foods, including loss of 
sensory quality [51,52]. The growth of a cell is controlled 
by a chromosome. Division of a cell is usually preceded by 
a division of the chromosome. But the doubling time could 
be shorter than the time required to replicate the chromosome 
through the mechanism of replication forks [41]. Since the 
replication of the gene is a chemical process, it seems 
reasonable that the growth would follow the Arrhenius law 
for a certain temperature range, i.e. the growth could be 
characterized by an overall activation energy if all other 
ecological factors were kept constant. The Arrhenius model 
takes the form: 

k = ko exp(-EA/RT) (3) 

where k is the microbial growth rate constant, k0 is the 
'collision' or 'frequency' factor, T is the absolute temperature 
(K), R is the universal gas constant (8.314 J mo1-1 K -1) 
and EA (J tool -1) is a thermodynamically defined quantity 
called the activation energy, which is a measure of the 
temperature sensitivity of the reaction(s) responsible for 
microbial growth. This model states that a plot of In k vs 
1/T will give a straight line. EA can be determined from its 
slope. 

Since bacterial growth involves the interaction of a highly 
complex series of reactions, the resulting Arrhenius plots 
may deviate markedly from linearity as the temperature 

TABLE 2 

Comparison of Monod model with Gompertz function for modeling the growth of Pseudomonas fragi in a simulated milk" 

Temperature Growth rate (h -1) 
(~ 

Lag time (h) Time (h) to reach 2 x 107 CFU m1-1) 

Monod Gompertz Monod Gompertz Monod Gompertz ActuaP 

2 0.097 • 0.006 0.115 -+ 0.008 40.0 69.8 +- 0.7 152.6 179.6 175.0 
4 0.127 • 0.006 0.153 • 0.013 23.0 34.2 • 0.7 100.5 104.6 104.0 
7 0.210 -+ 0.029 0.262 -+ 0.022 16.0 22.8 • 0.5 58.3 61.8 61.0 

10 0.282 • 0.018 0.333 • 0.022 11.0 13.9 + 0.6 45.2 47.8 46.0 
13 0.406 -+ 0.021 0.476 • 0.057 8.0 11.1 • 0.8 29.6 32.9 32.0 
16 0.552 • 0.039 0.667 • 0.044 5.5 9.3 -+ 0.5 22.6 25.9 25.5 
22 0.832 -+ 0.126 1.022 + 0.070 4.0 5.9 • 0.5 15.5 17.0 16.8 

a Data after '-+' are the 95% confidence intervals. 
b Actual data estimates. 



increases or decreases. Some workers [45] showed a linear 
response of In k vs 1/T in the mid-range of temperature, 
but at higher and lower temperatures, the specific growth 
rate was less than the value predicted by the Arrhenius 
equation as would be expected since the same is found for 
enzyme activity. Ratkowsky et al. [82] interpreted the 
microbial response to temperature to be a continuously 
downward sloping curve throughout the entire suboptimum 
temperature range and concluded that the Arrhenius relation- 
ship was not applicable. Despite this fact, successful appli- 
cations of the Arrhenius model for predictive microbiology 
are available in the literature for many different organisms 
[21,44,69,83,89,101]. Fig. 3 from Fu et al. [32] contains data 
using the Arrhenius model for P. fragi, showing the deviation 
at high and low temperatures. 

The Arrhenius relationship can also be applied to model 
the temperature-dependence of the lag phase, which would 
be critical for prediction of the shelf-life under variable 
temperature conditions where there is an initial low microbial 
load. The inverse of the lag time (i.e. lag rate) is used to 
make the Arrhenius plot [2,32,93,101]. The fit for lag time 
is usually not as good as for the growth rate constant data 
from the exponential phase. This is shown in Fig. 4 from 
the data of Fu et al. [32]. 

2. Square root model. Ratkowsky et al. [82] proposed a 
simple two-parameter empirical equation for the tempera- 
ture-dependence of microbial growth up to the optimum 
temperature (Topt) as: 

X/k  = b (T - Train) (4) 

where k is the specific growth rate from the growth curve 
as before, b is the slope of the regression line of X/k vs 
temperature, T is the test temperature (in either ~ or K) 
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Fig. 4. Arrhenius plot of inverse lag time (lag rate) vs 1/T for 
Pseudomonas fragi growth from the results of Fu et al. [32]. 

and Tmin is the notational microbial growth temperature 
where the regression line cuts the temperature axis at 
X/k = 0. Ratkowsky et al. [82] applied Eqn 4 to more than 
50 sets of growth data with excellent fit, and the equation 
also accurately described the growth rate data of an additional 
30 organisms studied by Ratkowsky et al. [81]. Fig. 5 shows 
the same data of Fu et al. [32] as in Fig. 3, plotted by the 
square root function, showing a better fit than found by the 
Arrhenius relationship. 

Ratkowsky et al. [81] expanded the above basic equation 
to cover the whole biokinetic temperature range and to 
account for the drop in growth rate above the Top t. The 
empirical non-linear regression model is: 

A 

O 

.1 
3.3 3.4 3.5 3.6 3.7 

1/Tx  10 3 ( l /K )  

Fig. 3. Arrhenius plot (log k vs l/T) for Pseudomonas fragi growth 
from the results of Fu et al. [32]. 

0.9- 

0 . 7 -  

I 
e'-' 

v 0.5 

> 

0.3 

0.I I I I i I i 

0 5 10 15 20 25 30 

Temperature (~ 

Fig. 5. Square root plot of growth rate constant vs temperature for 
Pseudomonas fragi from the results of Fu et al. [32]. 
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X/k = b (T - Train) {1 - exp [c (T - Tmax)]) (5) 

where b is the regression coefficient of ~/k vs T (in K) for 
T < Top, c is an additional parameter to enable the model 
to fit the data for temperatures above the Tort, and Tmax is 
the upper temperature where regression line cuts the 
temperature axis at ~/k = 0. Zwietering et al. [109] modified 
Eqn 5 to make it applicable for temperatures above Tmax 
and the modified equation was selected as the most suitable 
model for the specific growth rate as a function of temperature 
in comparison to several other models. 

Since obtaining accurate data at very low growth rates is 
di f f icu l t ,  Tmin and Tmax are notational temperatures and may 
not be the actual zero growth temperatures. In addition, 
the calculated Zmi n may be below the freezing point of the 
food. Freezing would alter the water activity and also affect 
the growth rate causing deviation from linearity. Since the 
actual Tmin for growth may occur at several degrees above 
the extrapolated value [45], the shelf-life predicted near the 
lower extreme of growth temperature based on the Square 
root equation, would be less than actually would occur. 

Chandler and McMeekin [12] used the Square root model 
to describe the effect of temperature on the lag phase of 
growth and showed that a Tmin value was obtained similar 
to that obtained for the log phase of growth ( -5 .8  ~ and 
-5 .2  ~ respectively). Smith [94] has also determined the 
effect of temperature on the lag and generation times of E. 
coli. Analysis of the data indicate that both parameters 
obeyed the Square root model and yielded similar Train 
values (1.75 ~ and 2.6 ~ 

3. Comparison of  Arrhenius model and Square root 
model. McMeekin et al. [68] pointed out that the nonapplic- 
ability of the Arrhenius law to the modeling of the 
temperature-dependence of microbiological growth can be 
viewed as resulting from the value of EA changing with 
temperature. Activation energy was related to the Square 
root model by the expression: 

EA = 2 RTZ/(T - Train) (6) 

Thus for a given organism, the change of E A is greater for 
low values of T - r m i  n (ranging from 5 to 30 ~ than for 
higher values. However, the true temperature-dependence 
of the activation energy may be incorrect, since the pre- 
exponential factor (k0) in the Arrhenius equation may 
also be temperature-dependent.  Overall, for a narrow 
temperature range, the activation energy can be assumed 

constant. 
Table 3 lists the results for the Arrhenius and Square 

root model for both the lag time and the specific growth 
rate constant data of P. fragi in a simulated milk system 
from [32] used in the previous plots. For both cases there 
was a good fit as would be expected if enough data points 
are collected. 

4. Linear model. Spencer and Baines [95] proposed a 
linear model based on the research of microbial growth on 
white fish. They postulated that the effect of temperature 
on the rate of spoilage of fish stored at a constant temperature 
between - 1  and 25 ~ was found to be approximately linear 
and could be expressed in the form: 

k = k0 (1 + cT) (7) 

where k = specific spoilage rate (spoilage units day -1) at 
storage temperature T; ko is the specific spoilage rate at 
0 ~ and c = temperature constant (linear temperature 
response). Thus a plot of k vs T gives a straight line. Such 
a response would be expected if both the temperature range 
and the EA were small, thus this equation has limited use. 

5. Log shelf-life model. If the temperature range of 
concern is about 20-30 degrees, then a simple plot of the 
shelf-life (e.g. time to some value of N) on semilog graph 
paper vs temperature is also a straight line. The log shelf- 
life equation takes the form of: 

ts = to e x p ( - b T )  (8) 

where ts is the shelf-life at temperature T in ~ to is the 
shelf-life at 0 ~ b is the slope of a plot of In ts vs T. This 
plot can be used to model the various effects of process, 
composition and package conditions as well as to establish 
the temperature sensitivity of the product. Fig. 6 shows a 
semilog plot of the end of shelf-life of pasteurized milk at 
different storage temperatures. The time for the psychro- 
trophic microbial count to reach 106 CFU m1-1 is superim- 
posed [55]. As seen there is a good correlation of growth 
and shelf-life. 

From this plot a simple approach for temperature- 
dependence is to use the value of Q10, which is defined as 
the decrease in shelf-life for a 10 ~ increase in temperature. 
It has been used to predict quality or nutrient losses for 
many foods and potency degradation for drugs [20,51]. It 
would be useful to know the theoretical as well as the 
practical limits of this extrapolating factor in view of both 
regulatory and economic issues. A difference of 0.5 in the 
Q10 value can have a large effect on the predicted shelf-life. 
The Q10 is usually assumed constant over a narrow range 
of temperature. From Fig. 6, the calculated Qlo is about 
4.4. Reported Q10s for microbial growth under refrigeration 
conditions range from 2 to 10. 

There are many other temperature-dependent models for 
microbial growth rate in the literature [56,109]. However, 
in general, they have more parameters to be estimated, 
which makes it very difficult to use for prediction under 
variable temperature conditions. Zwietering et al. [109] also 
proposed a hyperbolic model for the description of the lag 
time as a function of temperature. Dickson et al. [25] 
used exponential-decay models to describe the effect of 
temperature on generation time and lag time parameters 
derived from the Gompertz function. 



TABLE 3 

Kinetic parameters determined for Pseudomonas fragi in a simulated milk" 
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Arrhenius model: 
exponential phase 

lag phase 

Square root model: 
exponential phase 

lag phase 

Ink = 30.10 - 8.90 x 103 (l/T), 
In ko = 30.10 • 3.65 
In ( 1 / t L )  = 29.90 - 9.17 x 103 (1//3, 
In ko = 29.90 • 7.34, 

~/k = 0.0306 (T + 7.85) 
b = 0.0306 • 0.0016, 
1/X/tL = 0.0172 (T + 7.65), 
b = 0.0172 • 0.0017, 

r 2 = 0.984 
EA = 73.90 • 8.61 kJmol  -a 
r 2 = 0.963 
E A - 76.20 • 17.26 kJmol  1 

r 2 = 0.998 
Tm~n = -7.85 • 0.24 ~ 
r 2 = 0.993 
Tm~, = -7.65 • 0.45 ~ 

" From Fu et al. [32]. 
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Fig. 6. Shelf life plot for pasteurized milk [55]. 

1. Log shelf-life model. As the aw of the surface or the 

relative humidity in contact with the surface of a food is 
decreased, the microbial growth rate decreases thus changing 
shelf-life. A semilog plot of the shelf-life of cake products 

based on onset of molding has been found to be a linear 
function of aw at constant temperature  and oxygen [88]. The 
log shelf-life equation can be written as: 

l o g o  = a + b a w  (9) 

where O is the time for mold outgrowth,  a and b are 

constants, corresponding to the intercept and the slope from 

the plot of log O vs aw. There  is at present no theoretical 
model  for this. The  data of Kang et al. [49] for the effect 

of aw on generat ion time of C. perfringens at high aw in 
different humectant-containing media (sucrose vs glycerol), 

also shows an appropr ia te  l inear  relat ionship as seen in 
Fig. 7. 

Effect of water activity 
The growth and metabol ism of microbes demands the 

presence of water  in an available form. Fresh foods such as 

meat,  fish, poultry, fruits and vegetables have awS above 

0.98 and will support  the growth of most microorganisms. 
The aw in a food may be reduced by increasing the 
concentration of solutes in the aqueous phase of food, either 
by removing water  or  adding solutes, such as salt and sugar 
in a sauce covering the food or in the food itself. 

Many microorganisms,  including the pathogenic bacteria, 
grow most rapidly at aw levels in the range of 0.980-0.995. 
For all microbes there is a minimum water  activity below 
which they cannot grow. Bacteria  generally require a higher 

aw for growth than yeasts, while molds can tolerate much 
lower awS. Gram-posi t ive bacteria tolerate lower awS than 
gram-negative [42]. The method  of adding water  to a food 
system may affect the growth response of microorganisms 
since, usually, a food prepared by a desorption technique 
has a higher moisture content  at a given aw than the one 
prepared by an adsorption method  [1]. 
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Fig. 7. Effect of water activity on the generation time of Clostridium 
perfringens [49]. 



316 

2. Temperature/aw interaction models. Davey [24] modified 
the Arrhenius equation to produce a model which predicts 
the combined effect of temperature and water activity on 
the growth rate of bacteria and which has the form: 

In k = Co + C1/T + C2/T2 + C3aw + C4aw 2 

where Co through C4 are the five coefficients to be determined 
by multiple-linear regression curve fitting techniques. The 
added constants can be looked at as 'virial coefficients', a 
term used by physical chemists to describe the higher order 
effects of factors (aw, T) on reactions. In essence these 
virial coefficients are curve fitting terms. Of course, with 
five constants as in Eqn 10, most models will give good fit. 
When aw ~ 1, Eqn 10 can be simplified to account for only 
the effect of temperature. Most refrigerated tissue foods 
would require a significant decrease in moisture content to 
drop the aw significantly and to have an impact in this 
equation. This equation has also been used for lag time 
data, as long as 1/tL is substituted for k [24]. 

McMeekin et al. [67] and Chandler and McMeekin [13] 
modified the basic Square root equation to incorporate aw: 

k / k  = ckf(aw - MINaw) (T - Tmin) 

where c is a constant and MINaw is the theoretical minimum 
aw for the growth of Staphylococcus xylosus. This equation 
has also been used successfully to model the T/aw responses 
of other bacteria [87]. 

In another study, Chandler and McMeekin [14] found 
that the growth of Halobacteria on products such as salted, 
dried fish, at all water activities below 0.85, could be based 
on the square root temperature response without the need 
to incorporate a water activity term. Broughall et al. [5] 
developed other mathematical models that describe the 
effects of lowering the water activity on the growth kinetics 
of S. aureus and Salmonella typhimurium. Unfortunately, 
no tests exist for the predictive ability of any of these models 
under conditions where both temperature and water activity 
continuously change with time, as would occur with moisture 
loss or gain during storage, and which is the real test of any 
predictive equation. 

Effect o f  gas composition 
Use of modified atmospheres through direct flushing or 

by the use of scavengers/emitters (CAP/MAP technology) 
is now an important area being examined and exploited for 
food processing and packaging of refrigerated foods [53]. 
Thus there is a need to examine what effects a change in 
gas composition will cause on microbial growth rates. 

1. Oxygen. The effect of oxygen on the redox potential 
generated will control microbial growth depending upon the 
specific microorganism of concern [47]. Restricting oxygen 
will generally restrict the growth of gram-negative, aerobic 
spoilage organisms such as Pseudomonas, while enhancing 
the growth of gram-positive, microaerophilic species such as 
Lactobacillus or Brothothrix. Facultative anaerobes (gram- 

positive or negative) are generally unaffected by lack of 
oxygen and could become predominant (e.g. Aeromonas). 
Table 4 provides some details about the oxygen requirements 
of microorganisms. Clark and Burki [16] showed the effect 
of 02 concentration on the cell growth rate of spoilage 

(10) organisms (Pseudomonas and Achromobacter). Above 1.0% 
02, there was no effect on the rate of growth up to 21% 
02, but below 1%, the growth rate slowly fell with about a 
20% decrease for a 0.5% decrease in O2 level. Data such 
as this for both spoilage and pathogen growth rates in the 
same food at different temperatures are needed to determine 
the effect on the food and its eventual safety. Further, 
microenvironments (especially in a food with a heterogeneous 
structure) may exist where oxygen tensions are low enough 
to permit the growth of pathogenic anaerobes, even though 
the oxygen level of the bulk phase might suggest otherwise 
[47]. The change in gas phase composition with time makes 
modeling and prediction very difficult. 

Since tissue foods utilize oxygen to some degree (by 
respiration, oxidation or microbial action) and since most 
films are permeable to gases like oxygen, one could expect 
a change in headspace oxygen concentration over time. The 
same models for gas permeation of moisture through films 

(11) as elaborated on by Labuza and Contreras-Medelin [54] 
could be used to establish the oxygen content with time as 
has been recently done by Mannapperuma et al. [64]. Fig. 
8 shows a general relationship between the food oxygen 
consumption rate and the permeability of the package to 
oxygen as a function of the internal oxygen level in the 
package. In essence, regardless of the initial oxygen level, 
the package interior will always end up at some equilibrium 
oxygen level (P02*) in a matter of a few hours or days [48]. 
If the oxygen level is below the critical oxygen concentration, 

TABLE 4 

Oxygen requirements of microorganisms" 

Aerobes-- 

Microaerophiles-- 

Facultative organisms-- 

Anaerobes-- 

require oxygen for growth: 
Pseudomonads 
Acinetobacter/Moraxella 
Micrococcus 
Film yeasts 
Molds 
require low levels of oxygen: 
Campylobacter 
LactobaciUus 
grow in the presence or absence of 
oxygen: 
Brochothrix thermosphacta 
Staphylococcus 
Bacillus sp. 
Enterobacteriaecea 
Vibrio 
Fermentative yeasts 
inhibited by oxygen: 
Clostridium Botulinum 
Clostridium perfringens 

a From Lambert et al. [57]. 
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Fig. 8. Generalized oxygen consumption and permeation rates as a 
function of internal package oxygen pressure. PO2* represents the 

critical oxygen level the package will attain. 

fresh foods will go into anaerobic glycolysis and rapid 
biochemical activity will cause rapid spoilage. Thus pathogens 
would not be a problem because metabolic off-odors would 
develop first. If the oxygen level is above the critical value, 
some facultative anaerobic pathogens might grow if the 
oxygen pressure is not high enough to prevent their growth. 
At  higher oxygen levels, aerobic pathogens may grow, if 
the competitors are eliminated by some other microbial 
hurdles. There has been little application of these models 
or the testing of them under variable temperature and 
humidity conditions. Since the film permeation rates and 
the respiration rates are temperature- and relative humidity- 
dependent, predictions may become impossible for a variable 
environment. Factors such as oxygen solubility in the 
food formulation, processing conditions and processing 
temperature are important. In addition to film oxygen 
permeability, data On head space volume, package surface 
area, and oxygen consumption rates due to combined effects 
of microbial load, respiration rate and chemical oxidation 
rate are needed. 

Transfers between the product-package system and its 
environment also can have significant consequences on the 
microbial activities necessarily associated with packaged 
foods. When beef, pork or lamb meat is wrapped in a 
permeable film (PVC, permeability to 02 equal to 10 000 ml 
m - 2  day atm), Pseudomonas became predominant at 4 ~ 
(42-60%). However, using a more gas-tight film with a 
permeability to O2 equal to 5-90 ml m - 2  day atm, and a 
permeability to COz of 20-300 ml m -2 day atm, Pseudomonas 
was inhibited and lactic acid bacteria became predominant 
[101. 

2. Carbon dioxide. Carbon dioxide (CO2) may kill, stimu- 
late, inhibit or have no noticeable effect on the growth 
rate of microorganisms, depending on the organism, the 

concentration of C O 2 ,  the temperature of incubation, the 
age of the cells when CO2 is applied, and the aw of the 
food or medium. In general, carbon dioxide extends the lag 
phase and reduces the growth rate of many microorganisms. 
The earlier the application of CO2, the higher its concen- 
tration in the atmosphere (0-25%), the lower the load of 
microorganisms, and the lower the temperature,  the greater 
the inhibitory action by COz [35]. 

The effect of COz on increasing lag time has been 
shown for Pseudomonas aeruginosa growing on a variety of 
substrates [50]; Pseudomonas and Achromobacter species 
between 0 and 22 ~ [16,17]; Bacillus subtilis at 30 ~ 
[78]; Pseudomonas growing on meat [92]; S. typhimurium, 
enterococci, and S. aureus at 10 ~ but not at 20 ~ [91]; 
and aerobic Pseudomonas species in fish at 4 ~ [103]. In 
contrast, there was no effect of carbon dioxide on the lag 
time of Pseudomonas putida at 25 ~ [71], P. fragi [28] or 
S. aureus at 30 ~ [78]. 

Thus an effect on the lag time is a common bu t  by no 
means a universal observation, which makes modeling of 
growth very difficult. Some evidence suggests that this effect 
is temperature-dependent,  with greater inhibition at lower 
temperatures [91]. Wodzinski and Frazier [106] found that, 
at low (5-10%) carbon dioxide levels, the microbial lag time 
could be increased or decreased relative to air-grown cultures, 
depending on salt concentration and temperature. Presence 
of carbon dioxide caused an increase of lag time, which was 
more evident at limiting aw and optimum growth temperature. 

Carbon dioxide can also reduce the growth rate in 
the exponential phase of some bacteria [26,27,70]. An 
enhancement of the effect at lower temperatures has been 
noted, but at least in the case of P. fragi this could be  
accounted for by the increased solubility of the gas. An 
exception of this appears to be B. cereus, where the 
maximum inhibition of the growth rate occurred at the 
optimum rather than the minimum growth temperature [27]. 
It should be noted, however, that the Bacillus were 
grown anaerobically while the Pseudomonads were grown 
aerobically. 

Molin [70] observed that growth rates were inhibited 
anaerobically at 25 ~ by 100% carbon dioxide, but consider- 
able variation occurred among species of ten facultative 
anaerobes. Lactobacillus species were the 'most resistant to 
carbon dioxide, but several Enterobacteriaceae, although 
inhibited by carbon dioxide, were still able to grow 
anaerobically in the presence of carbon dioxide at a greater 
rate than lactic acid bacteria. In this study, B. cereus was 
found to be the most' sensitive to carbon dioxide. A different 
order of sensitivity was reported in another study [26], which 
complicates any modeling based on literature data especially 
because of the lack of data on pathogens. 

Lambert et ak [58] studied the effect of headspace CO2 
concentration and irradiation doses on toxin production by 
C. botulinum (Type A, B) in inoculated fresh 'pork. Toxin 
production occurred faster in samples initially packaged with 
15-30% of CO2 while higher levels of CO2 (45-75%) 
delayed toxin production. Low-dose irradiation delayed toxin 
production at all levels of CO2 in the package headspace. 
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A C O  2 absorbent in the package enhanced toxin production 
by C. botulinum. This was attributed to production of H2 
by the CO2 absorbent, possibly resulting in a decrease in 
the oxido-reduction potential of the meat. 

As with oxygen, any modeling of the effect of carbon 
dioxide on shelf-life or food safety due to pathogen growth 
will be very dependent on the food composition, gas 
composition level, temperature and changes in water activity. 
Zhao et al. [108] found that the activation energy, for the 
growth of L. monocytogenes and Pseudomonas fluorescens 
on chicken meat under modified atmosphere storage, was 
related to the ratio of [O2]/(1 + [CO2]) for 02 concentration 
from 0 to 21% and CO2 from 0.03 to 80%. 

PREDICTION U N D E R  FLUCTUATING ENVIRON- 
MENTAL CONDITIONS 

Temperature abuse/variation is the most important factor 
in foodborne illness outbreaks, but to what extent the level 
of temperature abuse or fluctuation increases the risk of 
foodborne illness as well as the extent to which actual 
temperature fluctuations decrease shelf-life is not known. 
The relevant database in the literature for fluctuating 
temperature conditions is minimal compared to kinetic 
data and predictive equations available for destruction of 
microorganisms under variable heat processing conditions. 

A major question for CAP/MAP foods is whether 
organoleptic spoilage due to chemical or microbial action 
will occur before the number of pathogens or the toxin level 
becomes a risk when a product undergoes temperature 
abuse. Since different metabolic pathways and different 
organisms are affected differently by temperature fluctuation, 
this creates a real problem in terms of the ability to predict. 
Generally, the Arrhenius model or the Square root model 
should be accurate enough to predict the rate of growth and 
the lag time at any given temperature throughout most of 
the temperature range of interest based on the previous 
discussion. 

It is highly impractical and expensive to conduct microbial 
spoilage tests for all possible temperature scenarios. A better 
approach is to conduct a limited number of experiments 
under constant temperature conditions to create a growth 
rate response surface and, then to use mathematical modeling 
techniques to estimate microbial spoilage for a given time- 
temperature history. It should be noted that this approach 
may not be effective or a significant error may exist if there 
is a time-temperature history effect for the growth. A history 
effect is one in which the actual growth rate that is measured 
after a temperature shift is significantly different from that 
predicted by a database model done at the same temperature. 
Several varying temperature studies of microbial growth 
showed some history effects [32,74,80,89], yet others did 
not find any history effect within the temperature range 
studied [59,93]. Another  important factor that needs to be 
considered is the potentially different temperature-dependent 
behavior of different strains of the same species as well as 
different competitive species when exposed to a variable 
temperature sequence and the effects of those temperature 

changes on other hurdles. In addition to the above, studies 
at different water activities, oxygen levels and carbon dioxide 
levels to determine their singular and combined effects on 
growth rate would be needed. 

Time-temperature integration 
The use of mathematical models to study microbial 

growth under the fluctuating temperature conditions that 
prevail in commercial food distribution was first approached 
by Powers et al. [80] who predicted growth rate by multiplying 
the growth rate at the mean temperature by a fluctuating 
coefficient which was derived from a Q10 value. However, 
the actual and the predicted rates did not correlate well. 
The inaccuracy was attributed to the variation in Qlo which 
remains constant only for a relatively narrow temperature 
range and, to the average growth rate data which in this 
case combined both the lag and exponential phase. As noted 
previously, these usually do not change to the same extent 
with temperature change because of different activation 
energies. 

Predicting the shelf-life of a food system with several 
different components becomes a problem when there are 
multiple modes of deterioration and each mode has its own 
temperature sensitivity [51]. The shelf-life of the whole 
product at any given temperature is determined by the 
mechanism in any component which proceeds fastest and 
thus causes the shortest life. Each food's metabolic pathway 
and natural flora are affected differently by temperature 
changes, aw and gas composition dependence, which creates 
a real problem in terms of the ability to make shelf-life 
predictions. 

Given that everything but temperature remains constant, 
one can simply use the following equation to integrate and 
determine the effect of a time-temperature history: 

f(A) = Zk[f(r,)jdt (12) 

where-f(A) = quality function = In N/No for first order 
microbial growth, kv(rt) l = time/temperature dependence of 
quality loss rate or growth rate of microbes. Taoukis and 
Labuza [96,97] have developed the method to solve this 
equation using the Arrhenius relation, which is an exponential 
function, and does not have an exact analytical solution. To 
simplify the solution, one divides the time-temperature 
exposure of the food into short, assumed-constant tempera- 
ture intervals and then sums up the products on the right 
hand side as seen in Eqn 13. In fact any temperature model 
can be used to get the value of k~ for that segment. 

In (N/No) = Y~ ki Ati (13) 
i=1 

Obviously, the final level of the growth is dependent upon 
the initial number, which in most cases will be unknown, 
so a safe estimate is needed for the average initial bacterial 
load. 

Recently, Van Impe et al. [102] proposed a dynamic 
model describing a bacterial population as a function of 
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both time and temperature,  over the whole biokinetic 
temperature range of growth and inactivation. The model 
seems to be able to deal with time-varying temperature 
condition, but has not been validated in practice. 

A good model must also encompass the growth rate- 
temperature response of all the species in the spoilage flora. 
It can be assumed that there will be considerable differences 
in these responses. Only a fraction of the initial flora wilt 
grow at chill temperatures. As the storage temperature rises, 
the fraction of the flora which grows will also increase; so 
the basic numbers as well as the growth rates are changing 
with temperature, and if there is competition or interaction, 
it is unlikely that any simple equation could model such a 
complex situation in a real food but that remains to be 
tested. Temperature-function integration may, therefore, 
have very restricted uses for spoilage or pathogen prediction, 
especially for CAP/MAP foods and only when good data 
are available [56]. 

Individual packages of a case or in a pallet load may 
experience a series of different environments corresponding 
to different locations during distribution and storage. Other 
packages from the same consignment will meet conditions 
which differ both in duration of storage and by traversing 
different parts of the distribution system. Furthermore 
packages are not identical, even if nominally the same, and 
will respond rather differently. Thus, one cannot assume 
that all packages will be stored for the same period under 
identical conditions, or will react in the same way. 

An approach to solve for the temperature variation in a 
pallet would be to use a finite difference or finite element 
solution of the heat transfer equations [93], which facilitates 
the inclusion of: (i) variable environmental conditions; (ii) 
non-uniform initial conditions of temperature and bacterial 
load; (iii) temperature-dependent thermophysical properties 
of foods; and (iv) the thermal properties of the packaging 
material. An application of this for the growth of Brochothrix 
thermosphacta under fluctuating temperature conditions was 
illustrated by Simpson et al. [93]. In many cases one can 
assume that most of the damaging microbial growth will 
occur on the food surface, and that the surface closely 
follows the environmental conditions, thus a simple analytical 
equation can be employed. However, the temperature at 
the surface is affected by the thermal inertia of the entire 
food contents. For example, it has been shown that serving 
size may affect the level of temperature abuse [2 t . 

Another approach to variable temperature shelf-life 
prediction was the graphical method developed by Charm 
et al. [15], who correlated spoilage of fish at different 
temperatures to the number of days of shelf-life at ice 
storage. From this they developed the 'shelf-life prediction 
slide rule' [86], which by a series of simple operations, 
allowed a rapid estimate of the remaining shelf-life of lean 
fish. It is essentially based on the log shelf-life model. 
Castell-Perez et al. [11] utilized a computer stimulation of 
the Monod equation for predicting microbial growth during 
freezing and the equilibration to frozen storage conditions. 
Thompson et al. [99,100] and Willardsen et al. [105] studied 
microbial dynamics under constant and rising temperatures 

during cooking of beef and showed good predictions. As 
seen, the number of actual tests of the second approach of 
predictive microbiology is very small but promising, however 
no one has attacked and proven the ability to predict under 
conditions where aw and gas composition can change as 
well. 

Time-temperature integrators 
A time-temperature integrator/indicator is a device or tag 

that can keep track of an accumulated time-temperature 
distribution function to which a perishable product is 
subjected from the point of manufacture to the display shelf 
of the retail outlet, or even to the consumer [98]. The 
operation of a TTI is based on mechanical, chemical or 
enzymatic systems that change irreversibly from the time of 
their activation. The change is usually expressed as a visible 
response in the form of a mechanical deformation, color 
development and color movement. The rate constant for a 
TTI response usually follows the Arrhenius theory. The 
EA(TTI) values of the indicators cover the range of the most 
important deteriorative reactions in foods [30]. 

A kinetically based correlation scheme has been developed 
by Taoukis and Labuza [96] to allow prediction of the shelf- 
life of a product based on the TTI response. From the 
measured response of the tag and the tag kinetics, one 
can predict an effective temperature for a variable time- 
temperature distribution. This value is then used, with the 
equations for microbial growth kinetics to predict the amount 
of growth. This scheme assumes that the effective temperature 
response of the tag is equal to that of the food which is 
only true if the activation energies of the food and tag are 
equal [98]. Thus there is a need to have a tag with a 
temperature sensitivity close to that of the microbial growth 
resulting in quality loss. Fu et al. [33] designed such a 
tag theoretically by employing simultaneous diffusion and 
reaction. It should be noted that other models can also be 
applied as long as the same model is used to model both 
the TTI kinetics and the microbial growth kinetics. 

Examples of TTI applications are given in detail by 
Taoukis et al. [98]. Potential use of time-temperature 
indicators as indicators of temperature abuse of MAP 
products has also been discussed [31]. A TTI can also be 
designed to be set to indicate a safe condition of a food 
product [56]. The applicability of single end point, consumer 
readable TTIs as monitors of the end of shelf-life of 
refrigerated food products was examined by Sherlock et al. 
[90]. Consumer TTIs can be reliably used as end of shelf- 
life indicators for foods with similar activation energy for 
deterioration (-+2 kcal tool -1) [90]. One of the limitations 
of using these tags is that they react to package surface 
temperature and not the temperature of food content in a 
package, which, as pointed out earlier, may not respond to 
the environmental temperature fluctuation instantly. This 
would result in the unnecessary disposal of safe food with 
acceptable organoleptic quality [63]. 

Other approaches are to have electronic time-temperature 
recorders and integrate one of the predictive models in the 
hardware or download the data to a software package for 
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analysis on a computer. Daud et at. [22] predicted the 
remaining shelf-life of poultry tissues by incorporating the 
general spoilage curve of Olley and Ratkowsky [76,77] into 
an instrument called the temperature function integrator. 
This electronic-integrator device, developed by Nixon [75], 
to assess storage conditions in fish-holds, can give a readout 
of equivalent days of spoilage at 0 ~ and predict the 
remaining shelf-life of the product at 0-~ There was close 
agreement between the relative growth rates of spoilage 
bacteria in poultry predicted by the integrator with exper- 
imental values at storage temperatures up to 16 ~ Above 
this temperature, significant deviations between the two 
values occurred. The value of this approach is that it 
eliminates the error of a TTI which may not have the same 
temperature response as the food. 

"A versatile time-temperature function integrator (TTFI) 
for predicting the degree of bacterial spoilage occurring in 
chilled .foods during storage was described by Owen and 
Nesbitt [79]. The sensor of the TTFI (a thermistor) is 
attached by a flexible cable to the circuitry and display unit. 
The circuitry converts impulses received from the sensor, 
sums the ~emperature history and displays the integrated 
information as an equivalent number of days at a reference 
temperature. The remaining shelf-life m a y  be  calculated 
simply by subtraction of this value, from the expected shelf- 
life determined by storage trials at the reference temperature, 
or any other temperature in the psychrotrophic range. 

Alternatives to monitoring temperature during food 
distribution include the use of flexible, miniaturized electronic 
temperature recording devices [60]. They record time- 
temperature information that can be displayed and processed 
at the receiving end by interfacing with a microcomputer. 
Recently a satellite tracking system (Geostar Satellite Track- 
ing Service, Geostar Corp., Washington, DC) was introduced 
[55]. McMeekin and Olley [66] gave a list of other time- 
temperature recording systems. The key to all these systems 
is the use of the proper equations for modeling of growth 
and an understanding of kinetics. A common mistake is that 
simple integration of the area under a time-temperature 
curve is equivalent~ to shelf-life loss. One can quickly show 
that for a Q1o of 2 and an initial growth rate constant of 1 
day -1 at 0 ~ storage for 20 days at 1 ~ would give a 
count increase of e 2~ while storage at 20 ~ for 1 day would 
give a count increase of e 4, a difference of e 1~ or 9 million 
CFU unit weight -1. The areas under the time-temperature 
plot are equal but the area does not correlate with shelf- 
life. 

FINAL THOUGHTS 

Mathematical growth models have great potential for 
food  microbiologists, giving them the most cost-effective 
means of predicting the microbiological stability and safety 
of our foods and combining the power of modern computers 
with the skill of microbiologists. Given a food with a large 
enough database and knowledge of the physical and chemical 
conditions, such-as head space, gas composition, water 
activity and storage temperature, the microbial growth 

response can be predicted within the limits of that database. 
Once models are available for all microbes of concern, new 
formulations or new storage conditions could be evaluated 
without the need for slow, expensive microbiological tests 
[36]. Large databases are now under development to fill this 
need. A caution is that extrapolation of the models beyond 
the experimental limits may result in misleading predictions 
of microbial growth. Care should then be taken in the 
application of these models to variable conditions. First, it 
is important to ensure that the growth rate constant (or 
generation time) and the lag time are the key kinetic 
parameters to be modeled for shelf-life prediction. Secondly, 
good quality data are required to derive the models, so as 
to minimize the error in the prediction. Several researchers 
[3840] have noted the discrepancies in the predictions based 
on their own data when compared to other published data. 
All conclude that this is most probably due to variations in 
the microorganisms, the growth medium or the storage 
conditions. In addition, all models generated should be 
validated, preferably by other workers, to ensure their 
suitability, robustness and application before general use. 
Almonacid and Torres [2] presented detailed procedures to 
estimate the reliability of predictive microbiology models 
making extensive use of non-parametric statistical pro- 
cedures. In many cases industrial users are interested in 
deciding which refrigerated foods production and handling 
options are more effective in preserving quality and safety. 
In general, these applications require a lesser degree of 
model accuracy and a cost-effective application of predictive 
microbiology [93]. 

Current growth rate models have been based solely on 
constant temperature studies and seem to be adequate to 
predict rates at any other constant temperature within the 
temperature range studied. What is lacking are studies at 
temperatures outside the range and especially studies under 
cycling temperatures and knowledge of any history effect. 
There is a need for indicators capable of flexible design so 
that their expiration, as affected by storage, temperature 
and time, can be accurately set to follow biochemical or 
physical kinetics slightly faster than the rate of growth of 
specific target pathogens or toxin production. Ultimately, 
these indicators will provide a safe warning mechanism for 
the food processor, retailer and consumer. The confidence 
in the safety of new applications of modified atmospheres 
for food preservation will surely be greater if the scientific 
basis underlying these processes has been thoroughly studied. 

Good management practices relating to the raw material 
quality, sanitation, processing conditions and storage tem- 
peratures will ensure the maximum quality, microbiological 
safety and shelf-life. In the near future computer programs 
and expert systems will be applied in predicting shelf-life 
and relative safety of perishables. International cooperation 
will advance the field of predictive microbiology. 
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